Вычитание дробей
При вычитании дробей, как и при сложении, могут встретиться несколько случаев.
Вычитание дробей с одинаковыми знаменателями
При вычитании дробей с одинаковыми знаменателями от числителя уменьшаемого (первой дроби) отнимают числитель вычитаемого (второй дроби), а знаменатель оставляют прежним.
Пример.
![](http://matematik.3dn.ru/_pu/0/22099921.png)
- Прежде чем записать конечный ответ, проверьте, нельзя ли сократить полученную дробь.
В буквенном виде правило вычитания дробей с одинаковыми знаменателями записывают так:
![](http://matematik.3dn.ru/_pu/0/03626958.png)
Вычитание правильной дроби из единицы
Когда нужно вычесть из единицы правильную дробь, единицу представляют в виде неправильной дроби, знаменатель которой, равен знаменателю вычитаемой дроби.
Пример.
![](http://matematik.3dn.ru/_pu/0/94245969.png)
Знаменатель вычитаемой дроби равен 7, значит, единицу представляют как неправильную дробь 7/7 и вычитают по правилу вычитания дробей с одинаковыми знаменателями.
![](http://matematik.3dn.ru/_pu/0/71769461.png)
Вычитание правильной дроби из целого числа
Чтобы из целого числа вычесть правильную дробь нужно представить это натуральное число в виде смешанного числа.
Для этого занимаем единицу в натуральном числе и представляем её в виде неправильной дроби, знаменатель которой равен знаменателю вычитаемой дроби.
Пример.
![](http://matematik.3dn.ru/_pu/0/38364803.png)
В примере единицу мы заменили неправильной дробью 7/7 и вместо 3 записали смешанное число и от дробной части отняли дробь.
Вычитание смешанных чисел
При вычитании смешанных чисел отдельно из целой части вычитают целую часть, а из дробной части вычитают дробную часть.
При подобных расчётах могут встретиться разные случаи.
Первый случай вычитания смешанных чисел
У дробных частей одинаковые знаменатели и числитель дробной части уменьшаемого (из чего вычитаем) больше или равен числителю дробной части вычитаемого (что вычитаем).
Пример.
![](http://matematik.3dn.ru/_pu/0/57480096.png)
Второй случай вычитания смешанных чисел
У дробных частей разные знаменатели.
В этом случае вначале нужно привести к общему знаменателю дробные части, а затем выполнить вычитание целой части из целой, а дробной из дробной.
Пример.
![](http://matematik.3dn.ru/_pu/0/s02111755.jpg)
Третий случай вычитания смешанных чисел
Дробная часть уменьшаемого меньше дробной части вычитаемого.
Пример.
Так как у дробных частей разные знаменатели, то как и во втором случае, вначале приведём обыкновенные дроби к общему знаменателю.
![](http://matematik.3dn.ru/_pu/0/09172632.png)
Числитель дробной части уменьшаемого меньше числителя дробной части вычитаемого.
3 < 14
Поэтому, вспомнив вычитание правильной дроби из целого числа, займём единицу из целой части и представим эту единицу в виде неправильной дроби с одинаковым знаменателем и числителем равным 18.
![](http://matematik.3dn.ru/_pu/0/s61641412.jpg)
Сложим полученную неправильную дробь 18/18 и дробную часть уменьшаемого и получим:
![](http://matematik.3dn.ru/_pu/0/s61220309.jpg)
Все рассмотренные случаи можно описать с помощью правил вычитания смешанных чисел.
• Привести дробные части уменьшаемого и вычитаемого к наименьшему общему знаменателю.
• Если дробная часть уменьшаемого меньше дробной части вычитаемого, то занимаем у целой части уменьшаемого единицу. Эту единицу превращаем в неправильную дробь с одинаковым числителем и знаменателем равными наименьшему общему знаменателю.
• Прибавляем полученную неправильную дробь к дробной части уменьшаемого.
• Вычитаем из целой части целую, а из дробной - дробную.
• Проверяем, нельзя ли сократить и выделить целую часть в конечной дроби.
|